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Abstract

What primitives should we use to infer the rich 3D world
behind an image? We argue that these primitives should
be both visually discriminative and geometrically informa-
tive and we present a technique for discovering such primi-
tives. We demonstrate the utility of our primitives by using
them to infer 3D surface normals given a single image. Our
technique substantially outperforms the state-of-the-art and
shows improved cross-dataset performance.

1. Introduction

How do you infer the 3D properties of the world from a
2D image? This question has intrigued researchers in psy-
chology and computer vision for decades. Over the years,
researchers have proposed many theories to explain how the
brain can recover rich information about the 3D world from
a single 2D projection. While there is agreement on many of
the cues and constraints involved (e.g., texture gradient and
planarity), recovering the 3D structure of the world from a
single image is still an enormously difficult and unsolved
problem.

At the heart of the 3D inference problem is the question:
What are the right primitives for inferring the 3D world
from a 2D image? It is not clear what kind of 3D primitives
can be directly detected in images and be used for subse-
quent 3D reasoning. There is a rich literature proposing a
myriad of 3D primitives ranging from edges and surfaces to
volumetric primitives such as generalized cylinders, geons
and cuboids. While these 3D primitives make sense intu-
itively, they are often hard to detect because they are not
discriminative in appearance. On the other hand, primitives
based on appearance might be easy to detect but can be ge-
ometrically uninformative.

In this paper, we propose data-driven geometric prim-
itives which are visually-discriminative, or easily recog-
nized in a scene, and geometrically-informative, or con-
veying information about the 3D world when recognized.
Our primitives can correspond to geometric surfaces, cor-
ners of cuboids, intersection of planes, object parts or even
whole objects. What defines them is their discriminative
and informative properties. We formulate an objective
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Figure 1. We propose an approach to discover discriminative and
geometrically informative primitives. These can be recognized
with high precision in RGB images (b) and convey the underlying
3D geometry (c). We can use sparse detections of these primitives
to find dense surface normals via simple label transfer (d).

function which encodes these two criteria and learn these
3D primitives from indoor RGBD data (see Fig. 2 for some
examples of discovered primitives). We then demonstrate
that our primitives can be recognized with high precision in
RGB images (Fig. 1(b)) and convey a great deal of infor-
mation about the underlying 3D world (Fig. 1(c)). We use
these primitives to densely recover the surface normals of
a scene from a single image via simple transfer (Fig. 1(d)).
Our 3D primitives significantly outperform the state-of-the-
art as well as a number of other credible baselines. We also
demonstrate that our primitives generalize well by showing
improved cross-dataset performance.

1.1. Historical Background
The problem of inferring the 3D layout of a scene from

a single image is a long-studied problem in computer vi-
sion. Early work focused on geometric primitives, for in-
stance [6, 15, 30] which used 3D contours as primitives.
Contours were first detected and the 3D world was inferred
via a consistent line-labeling over the contours. While suc-
cessful on line-drawings, these approaches failed to work on
natural images: 3D contour detection is unquestionably dif-
ficult and remains, decades later, an active area of research.
Other research focused on volumetric 3D primitives such
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Figure 2. Example primitives discovered by our approach. (Left: canonical normals and detectors; right: patch instances). Our discovery
method finds a wide range of primitives: Row 1: objects and parts, Rows 2-4: 3 and more plane primitives, Row 5: 1 plane, Row 6-7: 2
planes. Our primitives contain visual synonyms, (e.g., row 6), in which different appearance corresponds to the same underlying geometry.
More examples can be found in the supplemental material. Legend for normals: blue: X; green: Y; red: Z.

as generalized cylinders [3] and geons [2]. However, al-
though these primitives produced impressive demos such as
ACRONYM [5], they failed to generalize well and the field
moved towards appearance-based approaches (e.g., [4, 10]).

Recently, there has been a renewed push toward more
geometric approaches where the appearance of primitives
is learned using large amounts of labeled [14] or depth
data [23]. The most commonly used primitives include ori-
ented 3D surfaces [14, 19, 23, 31] represented as segments
in the image, or volumetric primitives such as blocks [11]
and cuboids [18, 33]. However, since these primitives are
not discriminative, a global consistency must be enforced,
e.g., by a learned model such as in [23], a hierarchical seg-
mentation [14], physical and volumetric relationships [18],
recognizing primitives as parts of semantic objects [31], or
assuming a Manhattan world and low-parameter room lay-
out model [13, 35, 26]. Non-parametric approaches pro-
vide an alternative approach to incorporating global con-
straints, and instead use patch-to-patch [12], scene [17], or
2D-3D [22] matching to obtain nearest neighbors followed
by label transfer. While all of these constraint-based ap-

proaches have improved 3D scene understanding, accurate
detection of primitives still remains a major challenge.

On the other hand, there have been recent advances in
the field of detection enabled by discriminative appearance-
based approaches. Specifically, instead of using man-
ually defined and semantically meaningful primitives or
parts, these approaches discover primitives in labeled [4, 9],
weakly-labeled [8] or unlabeled data [29]. While these
primitives have high detection accuracy, they might not
have consistent underlying geometry. Building upon these
advances, our work discovers primitives that are both dis-
criminative and informative. We use depth data from
Kinect to provide the supervisory signal for automatically
discovering these primitives. Note that depth is not used as
a source of features (e.g., as in [21]), but instead as a form
of training-time-only supervision (e.g., as in [27]).

2. Overview
Our goal is to discover a vocabulary of 3D primitives

that are visually discriminative and geometrically informa-
tive; in other words, primitives need to be easily recognized
in unseen images and convey information about 3D proper-



ties of the scene when recognized. Our primitive represen-
tation incorporates three aspects: (a) Appearance: a well-
calibrated discriminative linear detector over HOG [7] (de-
noted w), which can be used to find the primitive in new im-
ages; (b) Geometry: a canonical form (denoted N), which
represents the underlying geometry in terms of surface nor-
mals, akin to a cluster prototype; (c) Instances: particular
examples of the primitive, which are regions of training
scenes in which the primitive appears. Note that this is an
over-complete representation: e.g., instances can be used to
obtain a detector and vice-versa.

We build our primitives using an iterative procedure de-
tailed in Section 3. After using an initialization that en-
sures both visual discriminativity and geometric informa-
tivity, we optimize the objective function by alternating be-
tween finding instances, learning the detector, and comput-
ing the canonical form. Once the primitives have been dis-
covered, we use them to interpret new images and demon-
strate that our detectors can trade off between sparsity and
accuracy of predictions. Finally, in Section 4 we show that
our sparse detections can be used to predict dense surface
normals from a single image using a simple transfer ap-
proach: we align copies of the training set with the test im-
age with the correspondence between primitive detections
and primitive instances, and estimate the test image’s sur-
face normals as a weighted sum of the training images.

3. Discovering 3D Primitives
Given a set of training images and their corresponding

surface normals, our goal is to discover geometric primi-
tives that are both discriminative and informative. The chal-
lenge is that the space of geometric primitives is enormous,
and we must sift through all the data to find geometrically-
consistent and visually discriminative concepts. Similar
to object discovery approaches, we pose it as a clustering
problem: given millions of image patches, we group them
so each cluster is discriminative (we can learn an accurate
detector) and geometrically consistent (all patches in the
cluster have consistent surface normals).

Mathematically, we formulate the problem as follows.
As input, we have a collection of image patches in the train-
ing dataset, X = {x1, . . . ,xm}. Each patch has a geomet-
ric component xG

i (a 2D array of surface normals scaled to a
canonical scale) and appearance representation xA

i (HOG).
Our goal is to cluster the data and learn geometric primi-
tives. Each primitive is represented as 〈w,N,y〉where w is
the weight vector of a linear support vector machine (SVM)
learned in appearance space, N represents the underlying
geometry of the primitive and y ∈ {0, 1}m is an instance
indicator vector with yi = 1 for instances of the primitive
and zero otherwise. Ideally, we would like to minimize the
following objective function:

min
y,w,N

R(w) +

m∑
i=1

c1yi∆(N,xG
i ) + c2L(w,xA

i , yi), (1)

where R is a regularizer on the classifier, each ci trades off
between terms, ∆ is a distance measure over 3D geome-
try, and L is a loss function. To avoid trivial solutions, we
also constrain the membership so each cluster has at least s
members.

The first term regularizes the primitive’s detector, the
second enforces consistent geometry across instances so
that the primitive is geometrically informative, and the third
ensures that the clusters’ instances can be distinguished
from other patches (that is, the loss function over the correct
classification of training patches). In our case, we use an
SVM-based detector and represent geometry with surface
normals. Therefore, we set R(w) to ||w||22, ∆ to the mean
per-pixel cosine distance between patches’ surface normals,
and L to hinge-loss on each xA

i with respect to w and y.
Note that there will be many local minima, with each mini-
mum w,y,N corresponding to a single primitive: as shown
in Fig. 2, many 3D primitives are discriminative and infor-
mative. We obtain a collection of primitives by finding the
many minima, which we do via multiple initialization.

Exactly minimizing this objective function is an ex-
tremely difficult problem, but its optimization is a chicken-
and-egg problem: if we knew a good set of geometrically-
consistent and visually discriminative patches, we could
train a detector to find them, and if we had a detector for
a geometrically consistent visual concept, we could find in-
stances. We propose an iterative solution for the optimiza-
tion. Given y, we can compute N and learn w. Once we
have w, we can refine our membership y and repeat.

3.1. Iterative Optimization
Our approach alternates between optimizing member-

ship y and detector weights w while ensuring both visual
discriminativity and geometric informativity. Given an ini-
tialization in terms of membership y (Section 3.2), we train
a detector w to separate the elements of the cluster from
geometrically dissimilar patches from negative examples V
(found via the canonical form N). In this work, we also
supplement our negative data with 6000 randomly chosen
outdoor images W . Once a detector has been trained, we
scan our training set I for the top most-similar patches to
w, and use these patches to update membership y.
From y to w: given the primitive instances, we want to
train a detector that can distinguish the primitive instances
from the rest of the world. To help find dissimilar patches,
we first compute the canonical form N of the current in-
stances as the per-pixel average surface normal over the
instances (i.e., after aligning and rescaling patches). We
then train a linear SVM w to separate the positive instances
from geometrically dissimilar patches in the negative set V
and all patches in W . We define geometrically dissimilar
patches as patches with mean per-pixel cosine distance from
N greater than 70◦. We use a high-threshold to include def-
inite mistakes only and promote generalization.
From w to y: Given w is found, we pick y by selecting a
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Figure 3. An illustration of the our simple inference approach. We align the training images via detections and predict the test image as a
weighted linear sum of the training images.

geometrically consistent set among the top detections of w
in I; in our experiments, we use the s-member subset that
approximately minimizes the intra-set cosine distance.

If done directly, this sort of iterative technique (akin
to discriminative clustering [34]) has been demonstrated
to overfit and produce sub-optimal results. We therefore
adopt the cross-validation technique of [8, 29] in which the
datasets are divided into partitions. We use two partitions;
we initialize identities y and train the detector w on parti-
tion 1; then we update the identities y and train w on parti-
tion 2; following this, we return to partition 1, etc.

3.2. Implementation Details
Initialization: We initialize our algorithm with a greedy
approach to find independently visually and geometrically
compact groups in randomly sampled patches. First, we
sample random square patches throughout the training set
I at multiple scales. For every patch, we find s − 1 near-
est neighbors in appearance and geometry space by inter-
secting the nearest neighbor lists (computed with Euclidean
distance on HOG and mean per-pixel cosine distance re-
spectively). We group the query patch with its neighbors to
initialize the primitive instances. For a training set of 800
images, we produce 3, 000 primitive candidates.
Calibrating the Detectors: Our discovery procedure will
produce a collection of geometric primitives with detec-
tors trained in isolation. We therefore calibrate our detec-
tors on held-out data. To produce calibrated scores, we
use the Extreme-Value-Theory-based calibration system of
Scheirer et al. [25], which requires only negative data. In
our case, this is ideal, since there are no ground-truth posi-
tive/negative annotations as in object detection, and we only
set a threshold for what counts as an inaccurate detection (in
our experiments, for calibration this is 30◦). This calibra-
tion step also suppresses any ineffective primitives.
Parameters: We represent the visual data of the patch xA

i

with HOG features [7], calculated at a canonical size (8× 8
cell with a stride of 8 pixels per cell) and the geometric
representation xG

i as the surface normal patch scaled to a
canonical size (10×10). For our detectors w, we use linear
SVMs trained with C = 0.1 fixed throughout.

4. Interpretation via Data-driven Primitives
Our discovery algorithm extracts geometrically consis-

tent and visually discriminative primitives from RGBD
data. These primitives can then be detected with high preci-
sion and accuracy in new RGB images to develop a 3D in-

terpretation of the image. However, not all surface normals
are equally easy to infer. Consider the image shown in Fig.
3(a). While the primitives are detected in discriminative re-
gions such as the cupboard and painting, other regions such
as a patch on a textureless wall are hopelessly difficult to
classify in isolation. While a sparse interpretation from dis-
criminative primitives (Fig. 3(a),(b)) might be sufficient for
many vision applications, others might require a more dense
interpretation. A dense interpretation would require propa-
gating information from the confident regions to the uncer-
tain regions and a variety of methods have been proposed to
do this (e.g., [13, 14]) To demonstrate the effectiveness of
our primitives, we propose a simple label-transfer method
to propagate labels, which we show outperforms the state
of the art in Section 5.
Technical Approach: Given a test image, we run the bank
of the 3D primitives’ learned detectors w. This yields a
collection of T detections (d1 . . .dT ). We warp the surface
normals so the primitive detections and s training instances
per detection are aligned, producing a collection of sT
aligned surface normal images (M1,1 . . .M1,T . . . ,Ms,T ).
We infer the pixels of a test image as a linear combination
of the surface normals of these aligned training images with
weights determined by detections:

M̂(p) =
1

Z

s,T∑
i,j=1,1

score(d) exp(−||p− dj ||2/σ2
spatial)Mi,j(p),

where Z is a normalization term. The first term gives high
weight to confident detections and to detections that fire
consistently at the same absolute location in training and
test image (e.g., floor primitives should not be at the top
of an image). The second term is the spatial term and
gives high weight for transfer to pixels near the detection
and the weight decreases as a function of the distance from
the location of the primitive detection. Each direction is
processed separately and the resulting vector renormalized,
corresponding to a maximum-likelihood fit of a von Mises-
Fisher distribution. This procedure is illustrated in Figs. 3,4.

5. Experimental Evaluation
Dataset: We evaluate our approach on the NYU Depth v2
[28] dataset. This dataset contains 1, 449 registered RGB
and depth images from a wide variety of real-world and
cluttered scenes. We ignore values for which we cannot
obtain an accurate estimate of the surface normals due to
missing depth data. We compute the “ground truth” surface
normals with respect to the camera axes from the depth data
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Figure 4. Qualitative Results: The above figure shows two examples of how our primitives help us in accurate but sparse 3D interpretation of
images. This sparse understanding can then be used to produce an accurate dense 3D interpretation even using a simple transfer approach.

using a least-squares fit followed by bilateral smoothing to
reduce noise. For all our experiments, we use four-fold
cross validation while ensuring no room appears in both the
train and test parts of a split. Fig. 2 shows some examples
of the top primitives of one fold.
Baselines: We qualitatively and quantitatively compare
against state-of-the-art methods for depth and surface nor-
mal prediction. Specifically, we compare against eight base-
lines in sparse and dense prediction. The first five are the
state-of-the-art; the sixth tests the contribution of geomet-
ric supervision; the last two test against direct regression of
surface normals.
(1) Lee et al. [19]: The plane-sweeping orientation map
finds sparse vanishing-point aligned planar surfaces from
lines. For dense predictions, we use NN-based filling.
(2) Hoiem et al. [14]: The geometric context approach
predicts quantized surface normals in five directions us-
ing multiple-segmentation based classifiers. We retrain the
classifiers using the NYU data.
(3) Hedau et al. [13]: This baseline builds on geometric
context classifiers (including one for clutter), which we re-
train on NYU and uses structured prediction to predict a
vanishing-point-aligned room cuboid.
(4) Karsch et al. [17]: One can also produce surface nor-
mals by predicting depth and computing normals on the re-
sults; we do this with the depth prediction method of Karsch
et al. [17], which out-performs other methods for depth pre-
diction by a considerable margin in all evaluation criteria.
(5) Saxena et al. [23]: We also compare with surface nor-
mals computed from depth predicted by Make 3D using the
pre-trained model.
(6) Singh et al. [29]: We compare against this appearance
based primitive discovery approach. We replace our geo-
metric primitives with mid-level patches discovered by [29],
and use the same inference pipeline.
(7) RF + SIFT: We train a random forest (RF) regressor
to predict surface normals using a histogram of dense-SIFT
[20] features (codebook size 1K) over SLIC [1] superpixels
(S = 20, M = 100) as well as location features.
(8) SVR + SIFT: We also train a ε-Support Vector Regres-

sor (SVR) using a Hellinger kernel to predict surface normal
orientations using the same input features as above.
Evaluation Criteria: Characterizing surface normal pre-
dictor performance is difficult because different metrics
encode different objectives, not all of which are desir-
able. For instance, the root-mean-squared error (RMSE)
so severely penalizes large errors that in practice it charac-
terizes the tail of the error distribution. This was noted in
the stereo benchmark [24], which favors alternate metrics
that count pixels as correct or not according to a threshold.
Therefore, in addition to reporting the mean, median, and
RMSE on a per-pixel-basis, we report three pixel-accuracy
metrics, or percent-good-pixels (i.e., the fraction of pix-
els with cosine distance to ground-truth less than t) with
t = 11.25◦, 22.5◦, 30◦. To characterize the noise in our
data, we annotated a randomly chosen subset of planar sur-
faces (ideally with the same surface normal) in 100 images
and evaluated the angular error between pairs of pixels; the
median error was 5.2◦.
Evaluating 3D Primitives: Fig. 4 shows qualitative exam-
ples of the top few primitive detections in two images. The
detections are accurate and convey 3D information about
the scene despite their sparsity. Fig. 5 shows additional
sparse results compared to [19].

We also quantitatively evaluate our primitives by produc-
ing a precision-vs-coverage curve that trades off between
precision (the fraction of pixels correctly predicted) and
coverage (the fraction of pixels predicted). Fig. 7 shows
the precision-coverage curve using a threshold of 22.5◦

to determine a predicted pixel’s correctness. We compare
with Geometric Context [14] (sweeping over classifier con-
fidence), and the appearance-only primitives of Singh et al.
[29]. Additional precision-coverage curves appear in the
supplementary materials. Finally, we report results using
only a single round of the iterative procedure to test whether
the primitives improve with iterations. Our approach works
considerably better than all baselines and the initialization
at every coverage level. The gains are especially strong in
the low-recall, high-precision regime. The appearance only
baseline [29] does not produce good results since its vo-
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Figure 5. Qualitative results of our technique in comparison to some of the baselines.

Figure 6. Example normal maps inferred via our data-driven 3D primitives. Top row: selected results; bottom row: results automatically
regularly sampled showing the (left-to-right/good-to-bad) performance range of the proposed method from 1/7th to 6/7th percentile.
Additional results appear in the supplementary material.
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Figure 7. Fraction of pixels with error below 22.5◦ vs. coverage
for the proposed approach and sparse baselines.

cabulary does not contain crucial 3D primitives which are
difficult to cluster using appearance alone (e.g., corners of
rooms in Fig. 2, row 7, col. 1). Note that our primitive
method does not reach 100% coverage in Fig. 7. The re-
maining unpredicted pixels correspond to textureless sur-
faces and cannot be predicted accurately from local evi-
dence, thus requiring our context-transfer technique.

As seen in Table 2, the most confident primitives perform
much better, showing that our technique can identify which
predictions are accurate; in addition to enabling high per-
formance for applications using sparse normals, this confi-
dence is a crucial cue for any subsequent reasoning.
Evaluating Dense Prediction: Fig. 4 shows how a few de-
tections can be used to align training normals and test im-
ages. The primitives create an accurate dense interpretation
from sparse detections. We qualitatively compare the re-
sults of our technique with several baselines in Fig. 5 and
show the entire spectrum of our results in Fig. 6. Our re-
sults accurately convey the 3D structure of scenes, includ-
ing fine-grained objects such as filing cabinets even when
these details deviate from a typical scene (Fig. 6, upper-left
scene). Additionally, although we do not use a segmenta-
tion, our results accurately capture inter-object boundaries.

Quantitatively, we compare our approach with all the
baselines in Table 1. Predictions are qualitatively and quan-
titatively different if one assumes there are three orthog-
onal surface normal directions (the Manhattan-world as-
sumption). We therefore evaluate approaches making this
assumption separately. We add this assumption to our ap-
proach by adjusting each predicted pixel to the nearest van-
ishing point calculated by [13]. This results in gains in some
metrics and losses in others by making most predictions
almost perfect or completely wrong; for error thresholds
above t = 40◦, the assumption degrades results. Our ap-
proach outperforms all methods by a substantial margin in
all metrics. This is important since each metric captures a
different aspect of performance and no one metric is suffi-
cient: Hedau et al.’s method, for instance, does well on me-

Table 1. Results on the NYU Depth v2 dataset. Our technique
outperforms the baselines by a substantial margin in all metrics.

Summary Stats. (◦) % Good Pixels
(Lower Better) (Higher Better)

Mean Median RMSE 11.25◦ 22.5◦ 30◦

With Manhattan World Constraints
Lee et al. 44.9 34.6 54.8 24.8 40.5 46.7
Hedau et al. 41.2 25.5 55.1 33.2 47.7 53.0
3D Primitives 33.5 18.0 46.6 37.4 55.0 61.2

Without Manhattan World Constraints
Karsch et al. 40.8 37.8 46.9 7.9 25.8 38.2
Hoiem et al. 41.2 34.8 49.3 9.0 31.7 43.9
Singh et al. 35.0 32.4 40.6 11.2 32.1 45.8
Saxena et al. 47.1 42.3 56.3 11.2 28.0 37.4
RF + SIFT 36.0 33.4 41.7 11.4 31.1 44.2
SVR + SIFT 36.5 33.5 42.4 10.7 30.8 44.1
3D Primitives 33.0 28.3 40.0 18.8 40.7 52.4

Table 2. Evaluation of the approach at several coverage levels.

Mean Median RMSE 11.25◦ 22.5◦ 30◦

25% coverage 27.2 18.4 36.8 33.0 57.3 67.7
50% coverage 31.9 23.5 41.4 26.9 48.5 58.4
75% coverage 33.7 27.8 42.1 21.8 42.0 53.0
Full Coverage 33.0 28.3 40.0 18.8 40.7 52.4

dian error but produces many wildly inaccurate results and
thus does poorly in mean error. Analysis of the significance
of results may be found in the supplementary material.
Cross-Dataset Prediction: We also want to demonstrate
that our primitives generalize well and do not overfit to
the NYU data. Therefore, using identical parameters, we
use models learned on one split of the NYU dataset to
predict dense surface normals on the Berkeley 3D Object
Dataset (B3DO) [16] and the subset of SUNS dataset [32]
used in [22]. Fig. 8 shows some qualitative results from
these datasets. Some scenes are atypical of layout predic-
tion datasets (e.g., close-up views) but our method still pro-
duces accurate results. We also quantitatively characterize
the generalization performance on the B3DO dataset in Ta-
ble 3, since it has depth data available. Our approach again
outperforms the baselines in all metrics.
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Table 4. Results training on the NYU Depth v2 dataset using the
standard train-test split.

Mean Median RMSE 11.25◦ 22.5◦ 30◦

With Manhattan World Constraints
Lee et al. 43.3 36.3 54.6 25.1 40.4 46.1
Hedau et al. 40.0 23.5 54.1 34.2 49.3 54.4
3D Primitives. 36.0 20.5 49.4 35.9 52.0 57.8

Without Manhattan World Constraints
Karsch et al. 40.7 37.8 46.9 8.1 25.9 38.2
Hoiem et al. 36.0 33.4 41.7 11.4 31.3 44.5
Saxena et al. 48.0 43.1 57.0 10.7 27.0 36.3
RF + SIFT 36.0 33.4 41.7 11.4 31.4 44.5
SVR + SIFT 36.6 33.6 42.5 10.6 30.6 44.0
3D Primitives 34.2 30.0 41.4 18.6 38.6 49.9

A. Supplemental Results
To facilitiate comparison with other methods, we pro-

vide results on the NYU v2 dataset using the train-test split
used in [28] in Table 4. This split contains 795 images for
training compared to the 1086 – 1089 images available for
training in each split of our 4-fold cross validation (≈ 30%
less data).


